Cable Modems
A cable modem is a type of modem that provides access to a data signal sent over the cable television infrastructure. Cable modems are primarily used to deliver broadband Internet access in the form of cable internet, taking advantage of the high bandwidth of a cable television network. They are commonly found in Australia, New Zealand, Canada, Europe, Costa Rica, and the United States. In the USA alone there were 22.5 million cable modem users during the first quarter of 2005, up from 17.4 million in the first quarter of 2004.
In network topology, a cable modem is a network bridge that conforms to IEEE 802.1D for Ethernet networking (with some modifications). The cable modem bridges Ethernet frames between a customer LAN and the coax cable network.
With respect to the OSI model, a cable modem is a data link layer (or layer 2) forwarder, rather than simply a modem.
A cable modem does support functionalities at other layers. In physical layer (or layer 1), the cable modem supports the Ethernet PHY on its LAN interface, and a DOCSIS defined cable-specific PHY on its HFC cable interface. It is to this cable-specific PHY that the name cable modem refers. In the network layer (or layer 3), the cable modem is a IP host in that it has its own IP address used by the network operator to manage and troubleshoot the device. In the transport layer (or layer 4) the cable modem supports UDP in association with its own IP address, and it supports filtering based on TCP and UDP port numbers to, for example, block forwarding of NetBIOS traffic out of the customer's LAN. In the application layer (layer 5 or layer 7), the cable modem supports certain protocols that are used for management and maintenance, notably DHCP, SNMP, and TFTP.
Some cable modem devices may incorporate a router along with the cable modem functionality, to provide the LAN with its own IP network addressing. From a data forwarding and network topology perspective, this router functionality is typically kept distinct from the cable modem functionality (at least logically) even though the two may share a single enclosure and appear as one unit. So, the cable modem function will have its own IP address and MAC address as will the router.
A modem designed to operate over cable TV lines. Because the coaxial cable used by cable TV provides much greater bandwidth than telephone lines, a cable modem can be used to achieve extremely fast access to the World Wide Web. This, combined with the fact that millions of homes are already wired for cable TV, has made the cable modem something of a holy grail for Internet and cable TV companies.
There are a number of technical difficulties, however. One is that the cable TV infrastructure is designed to broadcast TV signals in just one direction - from the cable TV company to people's homes. The Internet, however, is a two-way system where data also needs to flow from the client to the server. In addition, it is still unknown whether the cable TV networks can handle the traffic that would ensue if millions of users began using the system for Internet access.
A cable modem is a type of modem that provides access to a data signal sent over the cable television infrastructure. Cable modems are primarily used to deliver broadband Internet access in the form of cable internet, taking advantage of the high bandwidth of a cable television network. They are commonly found in Australia, New Zealand, Canada, Europe, Costa Rica, and the United States. In the USA alone there were 22.5 million cable modem users during the first quarter of 2005, up from 17.4 million in the first quarter of 2004.
In network topology, a cable modem is a network bridge that conforms to IEEE 802.1D for Ethernet networking (with some modifications). The cable modem bridges Ethernet frames between a customer LAN and the coax cable network.
With respect to the OSI model, a cable modem is a data link layer (or layer 2) forwarder, rather than simply a modem.
A cable modem does support functionalities at other layers. In physical layer (or layer 1), the cable modem supports the Ethernet PHY on its LAN interface, and a DOCSIS defined cable-specific PHY on its HFC cable interface. It is to this cable-specific PHY that the name cable modem refers. In the network layer (or layer 3), the cable modem is a IP host in that it has its own IP address used by the network operator to manage and troubleshoot the device. In the transport layer (or layer 4) the cable modem supports UDP in association with its own IP address, and it supports filtering based on TCP and UDP port numbers to, for example, block forwarding of NetBIOS traffic out of the customer's LAN. In the application layer (layer 5 or layer 7), the cable modem supports certain protocols that are used for management and maintenance, notably DHCP, SNMP, and TFTP.
Some cable modem devices may incorporate a router along with the cable modem functionality, to provide the LAN with its own IP network addressing. From a data forwarding and network topology perspective, this router functionality is typically kept distinct from the cable modem functionality (at least logically) even though the two may share a single enclosure and appear as one unit. So, the cable modem function will have its own IP address and MAC address as will the router.
A modem designed to operate over cable TV lines. Because the coaxial cable used by cable TV provides much greater bandwidth than telephone lines, a cable modem can be used to achieve extremely fast access to the World Wide Web. This, combined with the fact that millions of homes are already wired for cable TV, has made the cable modem something of a holy grail for Internet and cable TV companies.
There are a number of technical difficulties, however. One is that the cable TV infrastructure is designed to broadcast TV signals in just one direction - from the cable TV company to people's homes. The Internet, however, is a two-way system where data also needs to flow from the client to the server. In addition, it is still unknown whether the cable TV networks can handle the traffic that would ensue if millions of users began using the system for Internet access.
No comments:
Post a Comment